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SUMMARY

Fluent retrieval and execution of movement
sequences is essential for daily activities, but the
neural mechanisms underlying sequence planning
remain elusive. Here participants learned finger
press sequences with different orders and timings
and reproduced them in a magneto-encephalog-
raphy (MEG) scanner. We classified the MEG pat-
terns for each press in the sequence and examined
pattern dynamics during preparation and produc-
tion. Our results demonstrate the ‘‘competitive
queuing’’ (CQ) of upcoming action representations,
extending previous computational and non-human
primate recording studies to non-invasive measures
in humans. In addition, we show that CQ reflects an
ordinal template that generalizes across specificmo-
tor actions at each position. Finally, we demonstrate
that CQ predicts participants’ production accuracy
and originates from parahippocampal and cerebellar
sources. These results suggest that the brain
learns and controls multiple sequences by flexibly
combining representations of specific actions and in-
terval timing with high-level, parallel representations
of sequence position.

INTRODUCTION

Most skilled human behaviors evolve in temporally structured

sequences. A breakdown of their fluency (e.g., in stuttering, dys-

praxia, and occupational dystonia) can profoundly impair

everyday functioning (Miller, 1988; Sadnicka et al., 2018; Stein

et al., 1996). Historically, two opposing theories have been pro-

posed for the neural basis of motor sequence control. The asso-

ciative chaining account, originating from the pioneering work of

Ebbinghaus in 1885 (Ebbinghaus, 2013), postulated strong for-

ward connections between successive elements of a sequence,

leading to the behaviorist idea that each sequence element

serves as a conditioning stimulus for the subsequent element

during the formation of complex behaviors (Terrace, 2005). In

modern neuroscience, this hypothesis has engendered the

formulation of state-space models of skilled motor control,

such as writing andMorse code production (Goudar and Buono-

mano, 2018; Laje and Buonomano, 2013; Shenoy et al., 2013;

Sussillo et al., 2015). These models are characterized by a

spatio-temporal trajectory determined by the serial evolution of

population activity, so that a population state n triggers the state

n+1, the latter n+2, etc. In neocortex-inspired recurrent neural

networks (RNNs), the evolution of multiunit activity is primarily

determined by the connectivity matrix acquired through learning.

In other words, motor sequences are controlled by a serial tran-

sition through neural population states, which are mapped onto

motor actuators.

However, since Lashley’s seminal proposal (Lashley, 1951),

there has been an alternative account, suggesting that all ele-

ments of a planned sequence are active simultaneously before

execution, leading to the characteristic finding of transposition

errors among nearby elements (Rhodes et al., 2004); e.g., as

observed in speech or typing. So-called ‘‘competitive queuing’’

(CQ) models can formally explain this behavior by introducing

a parallel preparation layer that determines serial order by

competitive interactions between sequence elements driven by

differing levels of excitation according to the sequence (Figures

1A–1C; see Bullock, 2004 for a review). The most active node

wins the competition, generates the corresponding action, and

is then self-inhibited through the planning layer, allowing the

next most strongly activated node to generate the next action.

This process effectively allows a conversion of a parallel planning

code into a serial output during execution. Crucially, the respec-

tive excitation gradients are learned by associations from a tem-

poral context layer to each sequence element. The pattern of

activity in this layer evolves over time during encoding, allowing

different items to be associated with different states, and is reset

prior to sequence production such that it evolves in the same

way as during encoding.

The form of activity in the temporal context layer can be as

simple as a decaying start signal (Page and Norris, 1998), a
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combination of start and end signals (Hartley and Houghton,

1996), or, to capture effects of temporal grouping or rhythm, a

sequence of overlapping states (Burgess and Hitch, 1999,

2006). Importantly, the temporal context layer represents

sequential timing or position independently of the actions

whose accurate sequential execution it controls. Thus,

although the evolution of activity in the temporal context layer

could well reflect associative chaining, temporal and character-

istic effector order errors reflect both the precision of the map-

ping from the temporal context to the parallel planning layer and

the process of selection during CQ. Thus, CQ models predict a

strict factorization of sequential and item information, whereas

RNN network models that are successfully trained to reproduce

sequences do so by producing a mixed internal representation

reflecting conjunctions of positions and items (Botvinick and

Plaut, 2006).

Direct neurophysiological evidence in support of the CQ

model has been obtained by Averbeck et al. (2002), who taught

non-human primates to copy geometrical shapes presented on

the computer screen while they recorded multi-unit activity

from the prefrontal cortex, an area homologous to the inferior

frontal cortex in the human brain (Bohland et al., 2010). Specif-

ically, they characterized multi-unit patterns during the produc-

tion of each segment in the shape-drawing sequence and then

decoded the presence of each segment’s activity pattern during

movement preparation and production. They found that the

strength of each segment’s activity pattern at the end of the

preparation phase corresponded to its respective position in

the upcoming sequence (Figure 1D), as predicted by CQmodels.

However, it is not clear whether these activity patterns primarily

reflected a graded preparation of specific motor elements in the

sequence or a higher-level temporal or ordinal position signal

(first, second, third, etc.) that might transfer across different mo-

tor elements.

Here we provide direct evidence for CQ in the human brain

during the preparation of accurately timed finger sequences

from memory using non-invasive whole-head recordings

(magneto-encephalography [MEG]). Further, we demonstrate

that the observed CQ pattern in the MEG signal during prepara-

tion primarily reflects the ordinal position of sequence items,

largely independent of finger identity and fine temporal structure,

and cannot be explained by a graded muscular pre-activation.

Finally, we show that the fidelity of CQ correlates with behavioral

accuracy across participants, suggesting that these neural rep-

resentations are relevant for skilled sequence production and

timing.

A B

C

Competitive 
choice
layer

Parallel 
planning 
layer

B - E - C - D - A
conversion to time

Temporal
context

t1 t2 t3 t4 t5

Parallel
planning
layer

B - E - C - D - A
conversion to time

Competitive
choice
layer

Temporal
context

t1 t2 t3 t4 t5

D

Parallel
planning
layer

B - E - C - D - A
conversion to time

Competitive
choice
layer

Temporal
context

t3 t4 t5

A B C D E

1st
2nd3rd

4th5th

A B C D E

2nd
3rd

4th5th

A B C D E

3rd
4th5th

A B C D E A B C D E

A B C D E

80

60

40

20

0
-.5 0 .5 1 1.5 sec

P
at

te
rn

 p
ro

ba
bi

lit
y 

(%
)

G
o 

cu
e

1st

2nd

4th
3rd

5th

CQ during 
preparation

t1 t2

Figure 1. CQ Model and Prior Data

(A–C) The Parallel planning and Competitive

choice layers of the competitive queuing (CQ)

model contains nodes representing possible

sequence items, such as finger presses A, B, C, D,

and E.When learning a sequence, connections are

formed from sequentially activated nodes in the

Temporal context layer to item nodes in the parallel

planning layer as each is activated in turn. Nodes in

the Competitive choice layer receive one-to-one

input from corresponding nodes in the parallel

planning layer and compete via lateral inhibition so

that the most active inhibits the other nodes in its

layer, drives motor output, and then inhibits its

input from corresponding parallel planning node.

Sequence planning is implemented by reactivating

the first state in the temporal context layer, pro-

ducing strong activation of the first item in the

parallel planning layer and progressively weaker

activation of the following items because of the

progressive decrease in overlap between the

connections to those items and the current activity

pattern in the temporal context layer (A). The most

active node in the competitive choice layer wins

the competition, generating the corresponding

action, and is then self-inhibited through the

planning layer, allowing the next most strongly

activated node to generate the next action, as in

positions two (B) and three (C). This iterative pro-

cess allows conversion of a parallel planning code

into a temporally structured serial output.

(D) Averbeck et al. (2002) recorded multi-unit ac-

tivity in prefrontal cortex while monkeys drew

geometrical shapes. The results were consistent

with the graded parallel preparation of sequential

shape segments, as described by the CQ model

above. Reproduced with permission; Copyright

(2002) National Academy of Sciences, U.S.A.
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RESULTS

Sequence Performance Shows Independent Temporal
Transfer
Participants were trained for 2 days to associate four abstract

visual cues with the production of four five-element finger

sequences from memory following a ‘‘go’’ cue (Figure 2A). In

the MEG session on the third day, the mean incidence of finger

errors (trials with the wrong finger press order or incomplete se-

quences) across the whole group ranged from 0%–13% (mean,

2%; SD, 3%). Participants were median-split by the incidence of

finger errors for later analysis, with more accurate participants

producing, on average, 0.6% (SD, 0.3%) and the less accurate

3.7% (SD, 4%) trials with an incorrect finger order. Although,

A

B

Figure 2. Task and Production of Sequences from Memory

(A) Subjects were required to prepare and produce one of four finger press sequences, as indicated by a unique visual fractal cue, followed by a go cue. The four

sequences were unique combinations of two finger orders (F1 and F2) and two temporal or interval orders (T1 and T2) and were generated randomly for each

subject. Subjects received feedback on the finger and temporal accuracy of their five finger presses after each trial, with crosses (x) signifying correct and dashes

(–) incorrect finger press responses across positions. The relative position of crosses on the y axis relative to a dashed midline indicates temporal accuracy.

(B) Individual subjects’ raster plots show the timing of single button presses for each trial produced from memory after the go cue (t = 0) during the MEG session

(target timing superimposed, black lines). The color code corresponds to the press position in (A). Trials for each sequence are grouped by sequence number and

sorted by temporal accuracy, with the most accurate in the top to least accurate trials in the bottom rows. Participants are grouped into more accurate and less

accurate based on amedian split of their average temporal performance error and sorted within each group by accuracy (most accurate at the top left to the least

accurate at the bottom right). Only trials with correct finger order were used for analysis.
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for the majority of participants, the production of the correct se-

quences was temporally aligned according to temporal interval

orders T1 and T2 across finger orders F1 and F2, respectively

(Figures 2A and 2B), there was also a substantial variation of

timing accuracy across participants. The mean temporal error

from target interval structure (expressed as percent of target in-

terval) across the whole group ranged from 10%–33% deviation

from the target interval sequence (mean, 19%; SD, 7%; Fig-

ure 2B). Hence, participants were also grouped using a median

split of interval deviation (temporal error) for later analysis, with

more accurate participants showing, on average, 14% (SD,

3%) and the less accurate 25% (SD, 5%) absolute deviation

from target intervals. On average, participants tended to pro-

duce finger press intervals 7% shorter than the respective target

intervals, resulting in sequences that were slightly faster than the

target sequence. Participants whowere less accurate (larger ab-

solute deviation from the target) were alsomore likely to produce

shorter rather than longer intervals (r = �0.817, p < 0.001, two-

tailed). Crucially, participants who made more finger errors

also tended to be less accurate in their timing (r = 0.616,

p < 0.011, two-tailed), suggesting that the differences in accu-

racy are driven by overall skill level rather than a strategic

trade-off between temporal and finger accuracy.

To evaluate sequence-specific learning, we conducted a post-

training test on the day before the MEG session during which

participants were asked to synchronize their respective presses

to a visual finger cue, as in the first stages of training (STAR

Methods). Participants showed significantly more accurate syn-

chronization to visual sequences when they encountered trained

sequences as well as sequences with a trained finger order or

trained timing compared to untrained control sequences (Fig-

ures 3A and 3B). This result confirmed an independent represen-

tation of the temporal structure of sequences that can be utilized

across finger sequences, in line with previous studies (Korny-

sheva and Diedrichsen, 2014; Kornysheva et al., 2013; Ullén

and Bengtsson, 2003). Participants with more pronounced

sequence-specific learning (quantified as the difference in syn-

chronization accuracy to trained versus untrained sequences)

produced larger inter-press intervals during the MEG session

(r = 0.501, p < 0.001, two-tailed), suggesting that the tendency

to compress the sequence was a marker of poor skill learning.

MEG Evidence for Competitive Queuing
During the MEG scan, finger sequences were visually cued with

an abstract shape for 1.8–2.2 s before a go cue. This provided

participants with a short period to retrieve and prepare the corre-

sponding sequence from memory prior to production. We used

multivariate linear discriminant analysis (LDA) to characterize

whole-headMEG activity patterns associated with the execution

of each finger press. Specifically, we trained our classifier on the

average MEG signal amplitude pattern across all sensors in a

10-ms window immediately preceding each finger press onset

during sequence production and then applied the classifier to

successive 10-ms time windows during sequence preparation

to establish the posterior probability of each press-related

pattern appearing during that period (Figure 4; see Figure S1

for complementary analyses using 5-, 20-, and 50-ms windows).

We tested the main prediction of CQ models: that there is a sta-

ble and graded likelihood of decoding each item (i.e., finger

press) during the preparation period, reflecting its position in

the upcoming sequence. This stands in contrast to associative

chaining or state-spacemodels, which predict an increased like-

lihood of decoding the first item alone prior to sequence produc-

tion. In addition, classification across different finger sequences

(‘‘temporal’’ and ‘‘positional’’ transfer; Figure 4) allowed us to

distinguish the contribution of representations of specific motor

acts in the parallel preparation layer from those reflecting a

higher-order temporal context signal, whereas classification

across different temporal sequences (‘‘spatial’’ and ‘‘positional’’

transfer) allowed us to examine the extent to which the temporal

context signal reflects positional or fine-temporal structure.

Our analysis demonstrated that, during sequence preparation,

the probability of each finger press being decoded across time

windows reflected its serial position in the upcoming sequence

(Figure 5A, ‘‘within’’), analogous to findings obtained using inva-

sive electrophysiology recordings in macaques (Averbeck et al.,
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Figure 3. Independent Transfer of Timing

and Finger Order to Untrained Finger

Sequences

(A) In a visually cued synchronization task, absolute

RT deviation from finger cue was determined for

each condition. Repeating sequences six times in

the test phase yielded an immediate decrease of

absolute RT deviation from target for trained

sequences (green) relative to untrained sequences

(black). Sequences with a trained finger order but an

untrained timing (blue) also produced immediate

benefits. Sequences with a trained timing but an

untrained finger order (red) also showed behavioral

advantages, but only after the first three sequence

repetitions, suggesting faster behavioral acquisition

of new sequences compared with a control condi-

tion (Kornysheva and Diedrichsen, 2014; Korny-

sheva et al., 2013).

(B) Mean RT deviation across subjects after the first three sequence repetitions showed behavioral advantages for the trained sequence as well as the trained

finger order and trained temporal transfer conditions compared with untrained sequences. **p < 0.01, *p < 0.05, one-sided t test.

Error bars indicate SEM.
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2002). Specifically, the mean pattern probability during the final

1 s of the preparation period was modulated by press position

(F(1.71, 25.60) = 42.23, p < 0.001, h2 = 0.738; one-way repeated

measures ANOVA, Greenhouse-Geisser-corrected, c2 (9) =

37.56, p < 0.001). As predicted by the CQ hypothesis, pattern

probabilities during this period were significantly higher for first

versus second (t(15) = 4.62, p < 0.001), second versus third

(t(15) = 4.57, p < 0.001), and third versus fourth (t(15) = 4.51,

p < 0.001) finger presses, whereas the probability of decoding

the fourth press was not significantly higher than that of the fifth

(t(15) = 1.78, p = 0.19; one-tailed t tests according to the CQ hy-

pothesis, Bonferroni-corrected for four comparisons).

The Competitive Queuing Signal Primarily Reflects
Serial Position
Next we aimed to establish whether CQ of press patterns during

the preparation period was primarily driven by representations of

effector identity (i.e., index finger, middle finger), versus effector-

independent sequence timing (i.e., 550-ms interval, 650-ms in-

terval), or ordinal position (i.e., first item, second item), which

are indistinguishable when training and testing the classifier on

data from a single learned sequence. To do so, we first examined

whether CQ of neural signals during sequence preparation was

preserved when classifying MEG patterns across sequences

with the same target timing but a different finger order (temporal

transfer). If neural CQ reflected the upcoming order of specific ef-

fectors (here, fingers) alone, then we would expect the accurate

queuing of pattern probabilities to collapse because the up-

coming finger order is rearranged relative to the training order

in the second to fifth positions; i.e., the training pattern for a

particular press position would reflect a different finger than

that in the test pattern. In contrast, if the neural CQ signals during

preparation included representation of sequence timing or

ordinal position regardless of effectors, then CQ during the prep-

aration phase should be upheld across sequences with a

different finger order (i.e., exhibit temporal transfer).

This analysis revealed that CQ during the preparation period

was qualitatively preserved across sequences with the same

temporal intervals but differing finger order (Figure 5A, temporal).

Specifically, mean pattern probability in the final 1 s of the prep-

aration period was still modulated by press position (F(1.68,

25.15) = 26.97, p < 0.001, h2 = 0.643; one-way repeated mea-

sures ANOVA, Greenhouse-Geisser-corrected, c2 (9) = 39.87,

p < 0.001), with pattern probabilities at the end of the prepara-

tion period being significantly higher for first versus second

(t(15) = 4.06, p = 0.002), second versus third (t(15) = 3.29,

p < 0.001), and third versus fourth (t(15) = 3.97, p = 0.002) finger

presses, whereas the probability of decoding the fourth

press was again not significantly higher than that of the fifth

(t(15) = 0.98, p = 0.68; one-tailed t tests according to the CQ hy-

pothesis, Bonferroni-corrected for four comparisons). These re-

sults demonstrate that the CQ of sequence elements during

preparation is only partially driven by finger identity but mainly

derives from overlapping representations of sequential timing

or ordinal position in a temporal context layer. They are also in

line with significant advantages for learning sequences that

retain the trained timing structure (Figure 3).

Next, we tested whether changing the fine timing structure

between training and testing patterns while retaining the same

ordinal finger sequence (spatial transfer) affected CQ. This

analysis revealed that CQ during the preparation period was

qualitatively preserved across sequences with the same finger

order but differing temporal structure (Figure 5A, spatial). Specif-

ically, the mean pattern probability during the final 1 s of

the preparation period was still modulated by press position

(F(1.61, 24.21) = 32.10, p < 0.001, h2 = 0.687, one-way repeated

measures ANOVA, Greenhouse-Geisser-corrected, c2 (9) =

45.11, p < 0.001), with pattern probabilities at the end of the

preparation period being significantly higher for first versus sec-

ond (t(15) = 4.22, p = 0.001), second versus third (t(15) = 3.57, p <

0.006), and third versus fourth (t(15) = 4.22, p = 0.001) finger

presses, whereas the probability of decoding the fourth press
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A Gaussian-linear classifier was trained to discriminate patterns of mean signal amplitude in a 10-ms time window preceding each of the five button presses

across all sensors in a dataset consisting of correct trials only. Example mean signal amplitude values across the scalp are shown for a representative participant

(temporal accuracy z = 0.45). The test dataset consisted of non-overlapping 10-ms time windows starting 2,000 ms before and ending 8,500 ms after the go cue

(‘‘within’’ the same sequences). For each time window in each trial, we calculated the probability of each button press. For illustration purposes, only the pattern

with the highest probability is shown (inverted commas) for one example trial in the same participant. Further, we also trained and tested the classifier using

sequences with the same timing but a different finger order (‘‘temporal’’), the same timing but a different finger order (‘‘spatial’’), and a different finger order and

timing (‘‘positional’’), respectively. The same analysis was performed on the mean signal amplitude from the four concurrently recorded EMG channels (data

not shown).
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was again not significantly higher than that of the fifth (t(15) =

1.69, p = 0.22; one-tailed t tests according to the CQ hypothesis,

Bonferroni-corrected for four comparisons). These results are in

line with significant advantages for learning sequences that

retain the trained finger order structure (Figure 3).

In combination, these results showed that CQ of neural signals

during the preparation period is preserved across finger orders

and temporal structure, suggesting that it includes a high-level

ordinal position code. To directly test this hypothesis, we inves-

tigated whether changing both the finger order and temporal

structure between training and test patterns while retaining

information about ordinal position in the sequence alone (posi-

tional transfer) would abolish CQ. Again, CQ during preparation

was retained (F(1.62, 24.30) = 32.10, p < 0.001, h2 = 0.657,
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Figure 5. Neural versus Muscular Markers of CQ

(A) MEG patterns. Trace plots display the probability of the first through fifth finger press patterns throughout preparation and production. Pattern probabilities

‘‘within’’ refers to training and testing within the same sequence trials. Press pattern probability traces were also calculated for training and testing across

sequences with the same timing but a different finger order (‘‘temporal’’), the same finger order but a different timing (‘‘spatial’’), and a different finger order and

timing (‘‘positional’’), respectively (Figure 3).

(B) Boxplots show the average distance between consecutive press pattern probabilities in the final 1 s before the go cue across subjects considering first

through fifth (left) and second through fifth press patterns (right), respectively. Note that, for each subject, the sequences always started with the same finger and

target interval. Positive values indicate that the average relative strength of the press pattern probabilities tended to be in accordancewith the temporal position in

the sequence. Together, the MEG results suggest a CQ of sequential movement patterns during preparation that generalizes across sequences, but equally a

significant reduction of CQ when classifying across sequences with different finger orders, timing, and both.

(C and D) Trace plots display the probability of the 1st–5th EMG finger press patterns (C) and boxplots the average distance between consecutive EMG press

pattern probabilities in the final 1 s before the ‘‘go’’ cue (D). In contrast to the MEG classification results, only the pattern for the first element in the sequence was

elevated in muscular space, suggesting that, at the periphery, only the first element in the sequence was prepared before the go cue.

**p < 0.001, *p < 0.05 (paired samples t tests, Bonferroni-corrected for three comparisons for first through fifth and second through fifth distances as well as MEG

and EMG separately).
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one-way repeated measures ANOVA, Greenhouse-Geisser-cor-

rected, c2 (9) = 41.19, p < 0.001), with mean pattern probabilities

in the final 1 s of the preparation period being significantly

higher for first versus second (t(15) = 4.05, p = 0.002), second

versus third (t(15) = 3.56, p < 0.006), and third versus fourth

(t(15) = 3.70, p = 0.004) finger presses, whereas the probability

of decoding the fourth press was again not significantly higher

than that of the fifth (t(15) = 1.58, p = 0.270; one-tailed t tests

according to the CQ hypothesis, Bonferroni-corrected for four

comparisons). These results confirm the manifestation of a

finger- and timing-independent code for ordinal position

during preparation that transfers across motor and temporal

sequences.

Having established the preservation of CQ when classifying

across sequences, we next sought to directly quantify any re-

ductions related to the change of finger- or timing-related infor-

mation. To this end, we directly compared the relative strength

of neural CQ signals, quantified as the distance between

consecutive press probabilities across the last 1 s of the prep-

aration period in each trial (single trial median averaged across

trials for each participant) for each of the classifiers (‘‘within,’’

‘‘temporal,’’ ‘‘spatial,’’ and ‘‘positional’’). A repeated measures

ANOVA with factors of ‘‘finger order’’ and ‘‘timing’’ changes re-

vealed significant main effects of ‘‘finger order’’ (F(1.39, 15) =

12.15, p = 0.003, h2 = 0.447) and ‘‘timing’’ changes (F(1.67,

15) = 12.15, p = 0.002, h2 = 0.468) as well as a significant

interaction between the two factors (F(1.92, 15) = 41.74, p <

0.001, h2 = 0.736). Direct comparisons between neural CQ

during preparation for ‘‘within’’ sequence versus ‘‘temporal,’’

‘‘spatial,’’ and ‘‘positional’’ transfer analyses, respectively, all

yielded significant decreases of the probability distance during

preparation (p < 0.0001, two-sample t test corrected for

three comparisons). These findings demonstrate a significant

attenuation of CQ when training and testing across sequences.

They suggest that only the conjunction of temporal, spatial, and

positional codes constitute a full-blown neural pattern for

sequence preparation, consistent with the behavioral costs of

changing the finger order and timing of a trained sequence

(Figure 3).

Finally, to probe the transfer costs further, we trained the

classifier on MEG data prior to presses with specific finger

identities (in different ordinal positions and preceded by

different temporal intervals), temporal intervals (in different

ordinal positions and effected using different fingers), or ordinal

positions (using different fingers and preceded by different

temporal intervals) across all sequences. We then tested these

classifiers on each sequence separately and averaged the re-

sults according to the position of the finger press or preceding

temporal interval in that sequence to examine differences in CQ

during the preparation period. Consistent with the findings

described above, CQ was most pronounced when training

on specific ordinal positions within each sequence, indepen-

dently of finger identity or the preceding temporal interval

(Figure S2).

In sum, these results indicate that the CQ during sequence

preparation is primarily driven by a effector- and timing-indepen-

dent code for ordinal position, presumably reflecting the overlap-

ping successive representations in a temporal context layer.

Decoding Dynamics during the Production Phase
In addition to the preparation phase, we also examined the dy-

namics of finger press probabilities during the production phase.

Phasic execution-related peaks weremarkedly attenuated in an-

alyses that classified across finger sequences (‘‘temporal’’ and

‘‘positional’’ classifiers; i.e., when finger identity differed be-

tween training and test sequences) compared with the ‘‘within’’

and ‘‘spatial’’ sequence analysis (where finger identity was pre-

served between training and test sequences). Specifically, the

mean decoding likelihood at the time of each finger press across

the second to fifth presseswas significantly higher in the ‘‘within’’

sequence analysis (production values cross-validated across tri-

als; Figure S3) comparedwith ‘‘temporal’’ (t(15) = 4.71, p < 0.001,

paired one-tailed t test) and positional (t(15) = 5.70, p < 0.001,)

but preserved in ‘‘spatial’’ transfer analyses (t(15) = 0.82, p =

0.638, paired one-tailed t test, Bonferroni-corrected for three

comparisons), which classified across sequences with the

same finger order. However, it is important to note that the

respective press probabilities were still significantly above

chance (i.e., 20%) at the time of each respective finger press

across all analyses (all p < 0.001, one-tailed t test against

chance, Bonferroni-corrected for four comparisons). This sug-

gests that, although finger identity had a stronger influence

on decoding probabilities during sequence production than

preparation, the finger-independent, position-related patterns

observed during the preparation period were also utilized during

sequence production.

Competitive Queuing Is Not Driven by Muscle Activity
Although the neural signature of CQ described above suggests

a top-down signal for the temporal planning of finger se-

quences, it is still possible that this pattern is partly driven by

a weighted activation of muscles at the periphery so that the

muscle synergy activations related to each finger movement

are weighted before production according to their occurrence.

Hence, using the same LDA procedure as for the MEG data

training and classification (Figure 4), we examined data obtained

from muscles of the right hand (flexor carpi radialis, abductor

polices brevis, abductor digiti minimi, first dorsal interossei)

concurrently with the MEG recording. This analysis revealed

that, during preparation, only the pattern probability for the first

finger press in the sequence, performed by the same finger

across all four sequences, was elevated above those for the

other sequence elements.

Specifically, the mean electromyography (EMG) pattern prob-

ability during the final 1 s of the preparation period was modu-

lated by press position for the ‘‘within’’ sequence analysis (i.e.,

training and testing the classifier on MEG data from the same

pattern; F(4, 60) = 7.44, p < 0.001, h2 = 0.332; one-way repeated

measures ANOVA) as well as ‘‘temporal’’ (F(2.74,41.17) = 5.27,

p = 0.005, h2 = 0.260; one-way repeated measures ANOVA),

‘‘spatial’’ (F(4, 60) = 7.39, p < 0.001, h2=0.330; one-way repeated

measures ANOVA), and ‘‘positional’’ (F(4, 60) = 5.88, p < 0.001,

h2 = 0.282; one-way repeated measures ANOVA) transfer ana-

lyses. However, in contrast to the MEG data, this effect was

driven purely by the elevation of the first press pattern probability

in the sequence,whichwas the same across all sequenceswithin

subjects (first versus second ‘‘within’’: t(15) = 3.882, p = 0.003;
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‘‘temporal’’: t(15) = 3.583, p = 0.005; ‘‘spatial’’: t(15) = 4.106,

p = 0.003; ‘‘positional’’: t(15) = 3.886, p = 0.003), with no other dif-

ferences between adjacent press probabilities reaching signifi-

cance in any analysis (p > 0.775, one-tailed t tests according to

the CQ hypothesis, Bonferroni-corrected for four comparisons).

Finally, the distance between consecutive press probabilities in

the MEG data did not correlate with the distance in the EMG

data in either the ‘‘within’’ (r = 0.246, p = 0.179), ‘‘temporal’’

(r = 0.321, p = 0.112), ‘‘spatial’’ (r = 0.182, p = 0.250), or ‘‘posi-

tional’’ (r = 0.128, p = 0.319) classification analyses. Although

the data provide strong evidence for muscular preparation of

the first press before the go cue, we could find no evidence for

weighted muscular synergies driving the CQ pattern in the CNS

during sequence preparation.

Competitive Queuing Is Not an Artifact of Temporal
Proximity
It is conceivable that the pattern probability gradient observed

here during the preparation period arises simply from auto-cor-

relation in the MEG time series and the temporal proximity of

training and testing time windows rather than the CQ of

sequence-related patterns. Specifically, this alternative hypoth-

esis assumes that there is a slow-moving brain state across both

preparation and production phases within each trial, resulting in

the MEG signal being more similar during time windows that are

close together (i.e., preparation period and first press) than those

further apart (i.e., preparation period and fifth press). If true, then

there would be a gradient of pattern probabilities during move-

ment preparation, reflecting the relative temporal offset between

the preparation period (on which the classifier was tested) and

the time of each finger press (onwhich the classifier was trained).

To examine this possibility, we conducted several control an-

alyses. First, we examined decoded press probabilities around

the time that the sequence cue appeared, indicating that

sequence preparation should begin 1.8–2.2 s before the go

cue. If these decoded press probabilities simply reflected tem-

poral proximity to the corresponding press, then the appearance

of this cue should not change the press probabilities. However,

we found an abrupt increase in the differences between succes-

sive press probabilities at the onset of the visual sequence cue

(Figures S4A and S4B), with CQ becoming more pronounced

as full information regarding the order and timing of finger

presses becomes available.

Next, we examined the slope of each finger press probability

time series during the preparation period. If they simply reflect

temporal proximity to the upcoming press, then they should

each exhibit a constant positive slope over the preparation period.

Conversely, if the press probabilities reflect the stable CQ of ele-

ments in the upcoming sequence, then they would not be ex-

pected to change over the preparation period. Consistent with

the latter hypothesis, none of the press probabilities for the sec-

ond to fifth items in the upcoming sequence showed a significant

positive slope during the final 1 s of the preparation period (all

p > 0.99, one-sample tests against zero, Bonferroni-corrected

for 5 comparisons; Figure S4C), although the probability slope

for the first finger did approach significance (p = 0.07).

Finally, we examined correlations between the MEG activity

patterns on which each finger press classifier was trained and

those during every other time bin across the preparation and pro-

duction periods (Figure S5A). If press probabilities during

sequence preparation arose as a result of slow drift in the MEG

signal, then correlations between the ongoing MEG activity

and the training patterns should be positive and increase gradu-

ally with temporal proximity to the relevant finger press.

Conversely, we found that activity patterns for the second to fifth

finger presses were anti-correlated with MEG activity patterns

during the preparation period, with correlation coefficients only

becoming positive after the onset of sequence production (see

Figure S5B for the EMG pattern similarity analyses and Fig-

ure S5C forMEG and EMGproduction pattern similarity matrices

used to train the classifier). Overall, these findings are consistent

with stable differences in press probabilities arising as a result

of CQ shortly after the sequence cue appears, rather than a

slow increase in press probabilities arising as a result of

increasing temporal proximity to the respective classifier training

windows.

Competitive Queuing Predicts Behavioral Accuracy
Next, we asked whether the degree of neural CQ during

sequence preparation was relevant for the subsequent produc-

tion of the finger sequences retrieved frommemory. Specifically,

we examined whether the average distance between successive

pattern probabilities during the final 1 s of the preparation period

(immediately preceding the go cue) predicted the subsequent

finger order and timing accuracy across trials in theMEG session

(STAR Methods).

Consistent with the predictions of CQ models, our findings

suggest that participants with a larger mean distance between

adjacent press probabilities according to their sequence posi-

tions tended to make fewer finger errors during the MEG session

(r = �0.508, p = 0.022; median split by finger accuracy: t(15) =

1.99, p = 0.033) and produce smaller temporal errors relative

to the target timing structure of sequences (r = �0.600, p =

0.007; median split by temporal accuracy: t(15) = 3.87, p <

0.001; Figures 6A and 6B). In particular, the probability dynamics

shown in Figure 6C illustrate striking differences in the fidelity of

CQ during sequence preparation between participants with

more and less accurate behavioral performance (median split

by timing accuracy; see Figure S6 for median split by finger order

accuracy) as well as the relative preservation of phasic response

curves during the serial execution period. Crucially, this correla-

tion with behavioral accuracy was also unique to MEG patterns.

Despite the elevation of the first EMG press pattern probability

prior to the go cue, which could have played a role in subsequent

sequence production, the fidelity of CQ in EMG patterns did not

show any significant relationship with overall points gained or the

size of temporal errors (Figures 6F–6H).

In contrast to the correlation between temporal accuracy and

average pattern probability distance across participants, we did

not find evidence that pattern probability distance during prepa-

ration predicted temporal accuracy during subsequent produc-

tion on a trial-by-trial basis. Within participants, the trial-by-trial

correlation coefficients ranged from r = �0.251 to r = 0.157

(SD = 0.107), with a predicted negative correlation being signifi-

cant at p < 0.05 in only 5 of 16 participants (Figure 6D, grouped

by timing accuracy). Accordingly, participants with a more

8 Neuron 101, 1–15, March 20, 2019

Please cite this article in press as: Kornysheva et al., Neural Competitive Queuing of Ordinal Structure Underlies Skilled Sequential Action, Neuron
(2019), https://doi.org/10.1016/j.neuron.2019.01.018



A F

B G

C H

D I

E J

(legend on next page)

Neuron 101, 1–15, March 20, 2019 9

Please cite this article in press as: Kornysheva et al., Neural Competitive Queuing of Ordinal Structure Underlies Skilled Sequential Action, Neuron
(2019), https://doi.org/10.1016/j.neuron.2019.01.018



pronounced neural CQ pattern during sequence preparation had

better overall performance in the sequence production phase.

However, despite the presence of CQ at the trial-by-trial level

(Figure 6E), this neural signal did not guarantee high execution

accuracy on each trial, which may be influenced by other down-

stream processes for motor implementation.

For the EMG patterns, in line with the group analysis, we did

not find any consistent significant trial-by-trial correlations be-

tween the EMG pattern probability distance and temporal accu-

racy. Within participants, the trial-by-trial correlation coefficients

ranged from r =�0.208 to r = 0.295 (SD = 0.137), with a predicted

negative correlation being significant at p < 0.05 in only 3 of 16

participants (Figure 6I, grouped by timing accuracy) with, on

average, no CQ at the single-trial level (Figure 6J). Therefore,

in the case of EMG data, there was no evidence of the

median probability distance associated with performance,

neither across nor within participants (trial-by-trial).

Competitive Queuing Originates from Parahippocampal
and Cerebellar Sources
Finally, we sought to identify the neural origins of CQduring prep-

aration in MEG sensor and source space. To this end, we used a

searchlight analysis to determine where the CQ signal during the

preparation period was strongest. Specifically, we quantified the

average distance between consecutive press probabilities at a

single time point 0.5 s before the go cue in each trial, after training

and testing our classifiers on data from the same finger press se-

quences (‘‘within’’ sequence analysis). These median distance

values were then z-transformed across all sensor and voxel

searchlights within each participant prior to group-level statisti-

cal analysis. The most pronounced effect of CQ during prepara-

tion appeared in the right temporal sensors (t(15) = 3.58, p < 0.01,

uncorrected; Figure 7A). In line with this finding, the same anal-

ysis conducted in source space showed a significant CQ dis-

tance effect to originate from a single cluster (pcluster < 0.001)

comprising the right temporal cortex, specifically the parahippo-

campus, extending ventrally into the fusiform area (Montreal

Neurological Institute [MNI] coordinates of peak voxel: 30, �30,

�24, t(15) = 6.94, p = 0.005, p value family-wise error [FWE]-cor-

rected at voxel level) and the right (ipsilateral) cerebellum, specif-

ically lobules VIII (MNI coordinates of peak voxel: 34, �30, �50,

t(15) = 6.51, p = 0.009) and V (MNI coordinates of peak voxel:

64, �46, �30, t(15) = 5.72, p = 0.046; Figure 7C).

In addition, to localize the sources of the press-related training

patterns (that is, the representations of execution of a specific

finger press within a given sequence), we trained and tested

our classifier on MEG data obtained 10 ms prior to each finger

press within each motor sequence using a 5-fold cross-valida-

tion procedure. As before, decoding accuracy values were

z-transformed across sensors and voxel searchlights within

each participant prior to group-level statistical analysis. Consis-

tent with prior findings (Wiestler and Diedrichsen, 2013; Wiestler

et al., 2011), the accuracy of finger press decoding was most

pronounced in the sensors located above the left sensory and

motor areas contralateral to the moving hand and the right tem-

poral sensors (t(15) = 3.11, p < 0.01, uncorrected; Figure 7B), the

latter partly containing the same significant sensors as in the CQ

analysis from the preparation period. At the source level, we

found a large significant cluster (pcluster < 0.001) comprising

contralateral primary sensory and motor regions with peaks in

the primary sensory cortex (MNI coordinates of peak voxels:

�22, �38, 52, t(15) = 11.19, p < 0.001 and �54, �30, 40,

t(15) = 8.87, p = 0.001), extendingmedially into the cingulate cor-

tex (MNI coordinates of peak voxel: �14, �28, 44, t(15) = 8.96,

p = 0.001; Figure 7D).

Finally, to gain a more detailed picture of the complementary

contributions of these regions during sequence preparation

and production (Figures 7A–7D, line and boxplots), we examined

CQ during the preparation phase and finger press decoding ac-

curacy from the production phase in each group of significant

sensors and peak voxels of significant clusters reported above.

Interestingly, the finger press decoding accuracy in the right

temporal sensors (t(15) = 8.66, p < 0.001) as well as the right par-

ahippocampal (t(15) = 10.73, p < 0.001) and cerebellar sources

(t(15) = 10.73; p < 0.001, one-sided t tests against chance level)

identified by the CQ analysis during the preparation phase

Figure 6. Correlation with Behavior

(A) Overall, both the incidence of trials with finger press errors (left) and the mean temporal error from target intervals (in percent, right) during the MEG session

correlated negatively with the distance between consecutive MEG pattern probabilities. The distance was extracted from the end of the preparation period in the

‘‘within’’ sequence classification (first through fifth) as a proxy of the strength of CQ.

(B) The median split based on finger press and timing errors revealed significantly stronger CQ for subjects with lower finger and timing error (higher spatial and

temporal accuracy).

(C) Trace plots as in Figure 5A, grouped according to the median split by timing error (see Figure S6 for grouping by percentage of trials with finger press errors).

(D) Trial-by-trial pattern distance probabilities and temporal performance were correlated in only five of 16 subjects. This finding suggests that the strength of

neural CQ during sequence planning predicted overall but not trial-to-trial performance in the subsequent execution period. Participants’ correlation coefficients

are grouped according to a median split by timing error, white shading signifying more and gray shading less accurate participants.

(E) Histograms show distributions of trial-by-trial pattern queuing distances during preparation, collapsed across more accurate and less accurate participants,

respectively. Positive values reflect thatmost trials showed the relative strength of the press pattern probabilities to be in accordancewith the temporal position in

the sequence trial by trial, in particularly for more accurate subjects.

(F–H) Association between pattern probability spread and behavior did not hold up for preparatory EMG patterns. Specifically, (F) the pattern probability spread

did not correlate with finger press errors (left) or temporal error, (G) showed no significant differences in amedian split based on finger press or temporal errors, or

(H) corresponding trace plots as in Figure 5A, grouped according to the median split by temporal error.

(I and J) No association of EMG preparatory patterns and behavior was found in (I) trial-by-trial pattern distance probabilities and temporal performance and (J)

trial-by-trial pattern distances during preparation, when collapsing across more accurate and less accurate participants.

**p < 0.01, *p < 0.05,m.s. p = 0.09, one-sided t test and linear correlations in line with the directional hypothesis for behavior and CQ patterns. Two-sided t tests

and correlations were also significant at p < 0.05.

Error bars indicate SEM.
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Figure 7. Significant Sensors and Sources with the Most Pronounced CQ Strength during Preparation

(A) CQ distance during preparation (sensor level). A sensor-level searchlight analysis demonstrated that CQ during preparation was most pronounced in the right

temporal sensors (p < 0.01, uncorrected). The red dot shows the centroid for the right cluster (masked by right frontal [RF], right central [RC], and right temporal

[RT] sensors).

(B) Decoding accuracy of finger presses during production (sensor level). Searchlight analysis revealed that sensors driving the differences between the press

patterns during production were located above the left (contralateral) sensorimotor sensors in addition to right temporal sensors. The red dot shows the centroid

for the right cluster (masked by RF, RC, and RT sensors).

(C) CQ distance during preparation (source level). The within-sequence CQ distance searchlight analysis at the source level revealed the right parahippocampal

area and right (ipsilateral) cerebellar lobules V and VIII as likely sources of CQ during preparation. Data are plotted as a t-statistic at a threshold of t(15) > 5.24,

p < 0.05 (FWE-corrected at the voxel level) centered at the peak voxel (MNI coordinates: 30, �30, �24). Line graphs show corresponding pattern probabilities

during preparation from peak voxels in significant clusters identified in the respective analyses presented in (C) and (D), specifically the right parahippocampus

(yellow), right cerebellar lobule VIII (yellow dashed), and left sensorimotor neocortex (magenta).

(D) Decoding accuracy of finger presses during production (source level). Searchlight analysis revealed that the differences between the press patterns during

production were driven by the left (contralateral) sensorimotor neocortex. Data are plotted as a t-statistic at a threshold of t(15) > 5.93, p < 0.05 (FWE-corrected at

the voxel level) centered at the peak voxel (MNI coordinates: �22, �36, 52). Boxplots show individual decoding accuracies in peak voxels of interest as in (C),

(legend continued on next page)
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showed above-chance finger press decoding accuracy in all

sixteen subjects during the production phase. This suggests

that activity patterns in parahippocampal and cerebellar regions

during preparation also contained information about the finger

press being executed during sequence production, although

the size of the effect was eclipsed by the concurrent representa-

tion of finger press identity in contralateral S1 and M1 regions. In

contrast, the probabilities in central sensors as well as contralat-

eral S1 and M1 did not show any evidence of a CQ gradient dur-

ing preparation (sensor level: one-way repeated measures

ANOVA, F(2.32, 17.77) = 0.37, p = 0.72, h2 = 0.024; Green-

house-Geisser-corrected, c2 (9) = 21.58, p = 0.01; source level:

F(3, 32.18) = 1.82, p = 0.16, h2 = 0.108; Greenhouse-Geisser-

corrected, c2 (9) = 18.71, p = 0.03), suggesting that central and

contralateral neocortical sensorimotor areas did not contribute

to establishing the temporal order of finger presses before

execution. In sum, our results indicate a special role of parahip-

pocampal and effector-related cerebellar sources in establishing

a CQ gradient during sequence preparation and its utilization

during sequence execution, whereas contralateral primary

sensorimotor sources appear to contribute to the task during

sequence execution only.

DISCUSSION

Using non-invasive neurophysiological recordings (MEG) in

combination with multivariate pattern classification (LDA), we

provide direct evidence for parallel CQ of planned sequential ac-

tions in humans. Our study extends previous findings in animal

(Averbeck et al., 2002) and computational models (Botvinick

and Plaut, 2006; Burgess and Hitch, 2005; Hartley and

Houghton, 1996; Henson, 1998; Rhodes et al., 2004) in several

directions. We show that neural CQ signals reflect an abstract

template for ordinal position that is transferable across move-

ment sequences and that the strength of CQ during preparation

predicts the participant’s skill level during production. In addi-

tion, we localize the neural CQ signal during preparation to ipsi-

lateral (right) parahippocampal and cerebellar regions and the

production signal to the contralateral sensorimotor neocortex.

These findings imply that sequential learning is factorized into

representations of ordinal structure and specific movements,

which are combined within a CQ mechanism.

Neural Competitive Queuing in Humans
Despite differences in methods and species, our results bear

remarkable resemblance to electrophysiology data obtained

from macaques (Averbeck et al., 2002). Specifically, our data

suggest that the elements constituting a movement sequence

are prepared in parallel, with the corresponding pattern probabil-

ities being weighted by their respective position in the subse-

quent sequence. After the go cue, these pattern probabilities

transitioned into phasic increases reflecting the serial execution

of the finger presses.

Our data are at odds with an alternative model of motor

sequence control that has dominated the field in the last decade,

implying that skilled sequences such as handwriting or tapping

sequences (e.g., Morse code production) are controlled by serial

state-space trajectories in RNNs mapped onto motor actuators

downstream (Goudar and Buonomano, 2018; Laje and Buono-

mano, 2013). According to these models, we would not expect

to find the respective population states for each movement to

be reinstated before sequence initiation. An exception is the

superpositional coding of sequence elements at the onset of

sequence recall produced using an RNN model by Botvinick

and Plaut (2006). Their model was able to produce population

activity patterns relating to each position in the sequence and

exhibit a summation of these patterns at the onset of the

sequence without an explicit CQ architecture. This renders the

RNN encoding effectively ‘‘parallel’’ and, thus, compatible with

both the probability gradient for sequence elements during

preparation shown by Averbeck et al. (2002) and our findings

(Figure 5A).

It is possible that both serial chaining and parallel queuing of

sequence representations co-exist in the nervous system.

Accordingly, their utilization may be determined by the kinematic

features of the motor sequence. Specifically, in contrast to the

current discrete motor sequence (involving temporal gaps in be-

tween movements), continuous and overlapping sequences are

prone to be encoded as integrated synergies, with movement

timing emerging from state-dependent control; e.g., position-

or velocity-dependent information (Conditt and Mussa-Ivaldi,

1999; Diedrichsen et al., 2007; Ivry et al., 2002; Zelaznik et al.,

2005). Notably, most skilled actions in everyday life, such as

speech, handwriting, and tool use, involve a wide range of

discrete and continuous movements, necessitating the combi-

nation of these two control modes. Here future studies need to

establish how different sequence types employed in these

everyday domains are segmented and prepared at the neu-

ral level.

Finally, these theoretical accounts can be integrated in princi-

ple. Multiunit recordings during the preparation and production

of reaching movements in non-human primates have revealed

that changes in neural state related to planning occur in the

null sub-space; i.e., a neural state that is distinct from the state

during production, consistent with RNN predictions (Kaufman

et al., 2014). Accordingly, Remington et al. (2018) proposed

that such null-subspaces for each movement may be utilized

to cue each element in the sequence independently. This sug-

gestion, in principle, allows for a parallel control of discrete ac-

tion sequences within the RNN framework.

Competitive Queuing Reflects Finger-Independent
Planning of Ordinal Position
We assessed whether the CQ pattern during preparation was

driven by the preparation of specificmovements in the sequence

or by an action-independent template for the upcoming

suggesting that, despite not being significant at thewhole-brain level, temporal sensors remained relevant during sequence production, with above chance (20%)

decoding accuracies.

Error bars indicate SEM. V, lobule V; VIII, lobule VIII; CB, cerebellum; LF, left frontal; LH, left hemisphere; LP, left parietal; LT, left temporal; M1, primary motor

cortex; PHC, parahippocampal area; RC, right central; RH, right hemisphere; RT, right temporal; S1, primary sensory cortex.
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sequence, as predicted by models of serial recall within the

framework of CQ (Bullock, 2004; Burgess and Hitch, 1999,

2006; Hartley and Houghton, 1996). By classifying within and

across sequences with different finger orders and timing (Fig-

ure 4), we showed that the CQ signal during preparation was

largely preserved under these circumstances, whereas the

phasic increases in finger press probability during sequence pro-

duction were distorted after the effectors diverged (second to

fifth presses). This indicates that the training patterns, corre-

sponding to mean activity in a 10-ms period before each regis-

tered finger press, contained information on the ordinal position

in the sequence in addition to the effector information and that

this information was retrieved from memory in the sequence

planning stage.

The retrieval of an abstract template for ordinal position during

movement planning is in line with models suggesting that the

temporal evolution of the sequence is established by input from

a reproducible temporal context signal to a parallel planning layer

(Burgess and Hitch, 2005, 1999; Hartley and Houghton, 1996;

Hartley et al., 2016). Furthermore, independent behavioral trans-

fer of trained sequence timing to new finger orders in current (Fig-

ure 3) and previous studies in humans (typing, vocal sequences)

and animal models (birdsong) (Ali et al., 2013; Bengtsson et al.,

2005; Binder et al., 2014; Kornysheva and Diedrichsen, 2014;

Kornysheva et al., 2013) supports the notion that temporal

sequence features were encoded separately from the specific

movements. This cannot be easily reconciledwith classical asso-

ciative chaining models or the idea of a single integrated spatio-

temporal neural trajectory where the serial position is inextricably

linked to the item (here, finger), such as in RNN models in which

timing is an emergent property of the population trajectory. How-

ever, RNNmodels are, in principle, well-suited to serve as neural

clocks (Buonomano and Laje, 2011) and have been shown to ac-

quire superpositional coding of the list elements activated at the

onset of recall (Botvinick and Plaut, 2006). Thus, the reported CQ

of sequence element probabilities before movement production

could primarily reflect a gradient of superimposed patterns en-

coding each temporal position in the sequence. Effectively, this

mechanism implies the reinstatement of a high-level sequential

plan during sequence preparation that can be utilized across

different movement sequences in a modular manner.

We found that the most pronounced pattern of CQ during

preparation originated in the right parahippocampal area. Neuro-

imaging studies have shown the recruitment of hippocampal and

parahippocampal regions duringmotor sequence learning tasks,

specifically those involving sequences of discretely timed move-

ments, including those learned implicitly (Lungu et al., 2014;

Schendan et al., 2003; Steele and Penhune, 2010). Moreover,

parahippocampal activity has been reported to correlate specif-

ically with the accuracy of temporal tapping patterns involving a

sequence of short and long intervals (Steele and Penhune, 2010).

Our results substantiate the broader involvement of hippo-

campal and parahippocampal areas in the timing of sequences

(Jacobs et al., 2013; Kraus et al., 2013), and more specifically

in the temporal succession or ordinal structure of sequences

(Friston and Buzsáki, 2016; Manns et al., 2007). The temporal

context signal itself could reflect the output of hippocampal

‘‘time cells’’ (Kraus et al., 2013). The observed graded press

probabilities according to ordinal position in the sequence sug-

gest that the first several press representations are all simulta-

neously active, with different levels of activity, as driven by

connections from the overlapping representations in the tempo-

ral context layer corresponding to specific ordinal positions (Fig-

ures 1A–1C). Importantly, these can be shared across different

sets of movement sequences (that is, across mappings to the

items in the parallel planning layer established through Hebbian

learning), enabling a higher-level sequential template (Burgess

and Hitch, 1999, 2006).

Further, source reconstruction indicated the involvement of

ipsilateral cerebellar lobules V and VIII, which have been shown

to hold sensory and motor representations of fingers of the ipsi-

lateral hand in humans (Wiestler et al., 2011). This suggests that

the cerebellum works in concert with parahippocampal areas to

achieve the queuing of actions during sequence preparation.

Specifically, we speculate that, while the parahippocampal

areas may retrieve a more abstract sequential plan for the

sequence (Friston and Buzsáki, 2016), the representation of

the actions themselves may be set by effector-specific cere-

bellar circuits in the form of a fine-grained spatio-temporal

forward model of the finger sequence before onset of the pro-

duction phase (Gao et al., 2012; De Zeeuw et al., 2011). Notably,

activity attributed to the parahippocampal area and the cere-

bellum showed above-chance accuracy in decoding the

sequence presses during the production period, whereas the

reverse, neocortical sensorimotor regions showing CQ of finger

press patterns during preparation, did not hold true. This disso-

ciation suggests that the structure of the upcoming sequence is

pre-specified outside of the neocortical regions that generate

the movements and continues to be utilized during production

(corresponding to temporal context and parallel planning layers

in Figure 1A), whereas the regions representing the movement

synergies are involved during production only (items in the

competitive choice layer in Figure 1A).

Despite the presence of a high-level template for ordinal posi-

tion across sequences, we found the strength of the queuing

pattern during preparation to be diminished significantly when

classifying across sequences with a different finger order or

timing or both. These results suggest that representations that

integrate ordinal position with specific movements and precise

timing are also present, even at the stage of preparation.

Taken together, our data suggest that the brain learns the task

structure and factorizes behavior into specific actions, their tem-

poral structure, and ordinal position. Associating actions with a

sequential position and selecting among them by CQ may be

sufficient to generate skilled sequence production. This factor-

ization makes learning more efficient and allows for transfer of

a learned structure to new motor sequences.

Strength of Competitive Queuing during Preparation
Predicts Performance
Participants who achieved a higher skill level in the sequence

production from memory showed a larger separation between

adjacent press-related pattern probabilities during sequence

preparation; i.e., the CQ pattern was more prominent in partici-

pants who made fewer finger and smaller timing errors (Figures

6A–6C). This is in line with the architecture of CQ models, in
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which more pronounced differences in the parallel planning layer

(Figure 1) reduce the chance of pressing a finger at the wrong

time during sequence production.

Remarkably, the significant correlation between overall per-

formance and mean CQ strength contrasted sharply with the

absence of a trial-by-trial correlation within participants. This

dissociation is a possible indication that the strength of CQ

during sequence preparation is a neural strategy adopted by,

on average, more skilled performers. Although this neural strat-

egy may be beneficial, it does not guarantee accurate perfor-

mance on each trial, due to downstream modulations occurring

between planning and motor implementation. Nonetheless, CQ

was present on a trial-by-trial basis, which excludes the

possibility that CQ is an artifact of averaging across trials with

single elevated press probabilities. Specifically, participants

who had reached a better behavioral performance tended to

have more trials showing clear CQ than less skilled participants

(Figure 6D).

The current non-invasive measure of CQ during sequence

planning in humans as well as the link between overall CQ

strength and performance provides a promising step toward

the identification of markers for skilled sequence preparation.

Determining the amount of separation between sequence ele-

ments before movement productionmay be useful in the context

of neurofeedback training to improve performance in patients

with higher-order motor impairments affecting sequence initia-

tion and fluency, e.g., stuttering, dyspraxia, and occupational

dystonia. Finally, our approach has the potential to advance

the development of brain-machine interfaces for paralyzed pa-

tients. Previous studies have looked at predicting single targeted

movements (Hochberg et al., 2006) or sequences up to two

movements at a time; e.g., from invasive recordings (Shanechi

et al., 2012). The current non-invasive method may assist the

readout of a multi-element sequence during the planning period

with the aim of achieving more fluent control of external devices

for skilled sequence production, such as a virtual keyboard or

tool use via an intelligent prosthesis.
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STAR+METHODS

KEY RESOURCES TABLE

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Dr. Katja Korny-

sheva (e.kornysheva@bangor.ac.uk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Participants
Sixteen right-handed healthy adults (9 females; mean age 24.4 years, SD: 4.9) with normal or corrected-to-normal vision participated

in this experiment which included two days of training and oneMEG session. Five additional participants participated in the study but

had to be excluded as follows: two participants due to poor performance at the end of the training session or during theMEG session

(error rate > 40%), one participant due to the absence of sequence-specific learning at the end of training, one participant due to

technical issues with the MEG system and one due to discomfort during the MEG session leading to the termination of the experi-

ment. All participants gave written informed consent to participate. The study was approved by the University College London

Research Ethics Committee for Human-Based Research (UCL Ethics ID: 1338/006, Data Protection: Z6364106/2011/10/25). All par-

ticipants were financially compensated for their participation.

METHOD DETAILS

Stimuli and behavioral task
Stimuli were presented via a digital LCDprojector (brightness = 1500 lumens, resolution = 10243 768 pixels, refresh rate = 60Hz) onto

a screen (height = 32 cm, width = 42 cm, distance from participant = 70 cm) that was parallel to the participant’s face inside a magnet-

ically shielded room using the Cogent (http://www.vislab.ucl.ac.uk/cogent.php) toolbox running inMATLAB (TheMathWorks, Inc., Na-

tick, MA). Participants had a similar setup during behavioral training involving the same response device (5 buttons, Current Designs),

with the visual stimuli shown on the computer screen directly and the participants being seated at an office desk. Stimuli were sym-

metrical abstract visual fractals. For each participant the four sequence cues were randomly selected and assigned to the sequences

from a pool of sixteen fractals. Each trained sequence consisted of five-finger presses (finger order) and five target intervals (550, 650,

800, 983, 1300ms) between finger presses (timing or temporal interval order), respectively. Sequence construction followed a factorial

design, with two orders of temporal intervals (T1 and T2) and two finger order sequences (F1 and F2) resulting in four unique temporally

structured finger sequences (Figure 2A), generated randomly for each participant. Importantly, however, the finger identity and target

timing for the first press in each sequence was preserved across all four sequences learned by each participant.

Participants were presented with a feedback screen after each trial showing the number of cumulative points across the whole

experiment, as well as feedback on whether they pressed the correct finger at the correct time. Participants received two points

per trial for a correct finger sequence with a temporal deviation from target timing of less than 30%, one point for a correct finger

sequence with a temporal deviation of less than 60% and zero points in any other case. During the first two training days participants

were presented with an auditory sound concurrently with the feedback screen, which indicated 0-2 points. No auditory feedback was

presented during the MEG session on day 3.

Training on day 1 consisted of 7 instructed blocks containing only trials in which the sequence was cued by a circle appearing on

the target finger at the target timing after the ‘Go’ cue to which the participants had to synchronize (168 trials), 7 mixed blocks

(56 instructed and 112 from memory trials following each other in a blocked 1:2 pattern, respectively) and 7 blocks with sequences
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SPM12 FIL FIL Methods Group https://www.fil.ion.ucl.ac.uk/spm

Fieldtrip Donders Institute for Brain Cognition and Behavior http://www.fieldtriptoolbox.org/

LDA Kornysheva and Diedrichsen, 2014 https://doi.org/10.7554/eLife.03043.018

e1 Neuron 101, 1–15.e1–e3, March 20, 2019

Please cite this article in press as: Kornysheva et al., Neural Competitive Queuing of Ordinal Structure Underlies Skilled Sequential Action, Neuron
(2019), https://doi.org/10.1016/j.neuron.2019.01.018

mailto:e.kornysheva@bangor.ac.uk
http://www.vislab.ucl.ac.uk/cogent.php
https://doi.org/10.17632/fxbmm66cr6.1
https://www.mathworks.com
http://www.vislab.ucl.ac.uk/cogent.php
https://www.fil.ion.ucl.ac.uk/spm
http://www.fieldtriptoolbox.org/
https://doi.org/10.7554/eLife.03043.018


produced from memory (168 trials). Training on day 2 consisted of 7 mixed blocks as previously and 12 blocks (288 trials) produced

entirely from memory. Additional testing that included trained and untrained sequences (consisting of untrained finger and interval

orders) presented as instructed trials was also conducted before and after training blocks on day 1 and 2, respectively. These

included trained and untrained sequences presented as instructed trials. TheMEGsession consisted of 2mixed blocks (16 instructed

and 32 from memory trials) for participants to refresh their memory of the sequences and become accustomed to the MEG environ-

ment. This was followed by 10 blocks with concurrent MEG and EMG recordings containing trials with sequences produced entirely

from memory (giving a total of 240 trials split evenly between the four trained sequences).

MEG recordings
MEG was recorded continuously at 1200 samples/second using a whole-head 275-channel axial gradiometer system (CTF Omega,

VSMMedTech) while participants sat upright in a magnetically shielded room. Head position coils were attached to nasion, left, and

right auricular sites to provide anatomical co-registration.

EMG recordings
Participants were also fitted with four EMG electrodes to measure finger movement-related muscular activity. The electrodes were

placed above the flexor carpi radialis (FCR), abductor polices brevis (APB), abductor digiti minimi (ADM), first dorsal interossei (FDI).

FCR was recorded with a belly-belly montage, APB, ADM and FDI with a tendon-belly montage.

QUANTIFICATION AND STATISTICAL ANALYSIS

Behavioral data analysis
To determine temporal accuracy in trials produced entirely from memory, we calculated a mean absolute deviation from target in-

terval structure for each trial expressed as percentage of the target intervals. For the pre and post-test which consisted of instructed

trials only, we calculated the absolute reaction time deviation from the finger cues to which the participant had to synchronize.

MEG and EMG preprocessing
MEG data analysis made use of SPM8 (Litvak et al., 2011, Wellcome Trust Centre for Neuroimaging, London, United Kingdom),

Fieldtrip (Oostenveld et al., 2011) Donders Institute for Brain Cognition and Behavior) and custom MATLAB code. MEG data

were downsampled to 1000 Hz, epoched for pre-processing into long trials spanning�2.8 to +12 s around the fractal cue to include

a baseline fixation, fractal cue, ‘Go’ cue, sequence production and feedback. A 48-52Hz stopband filter was then applied to remove

the 50 Hz power line noise within these long epochs. Channel artifacts were inspected in each participant, but no channels were

identified as corrupted in any of the datasets. Due to the need to retain as many trials as possible for pattern classification and the

involvement of long epochs, physiological artifacts related to heart rate, eyeblink, and breathing were identified based on the

characteristic topography and time-course for each participant using ICA (RUNICA algorithm) and removed from the dataset.

This procedure was carried out blind to the sequence conditions using the Fieldtrip component data browser, which allows the

inspection of the topography and trial-by-trial time-course of the components. ICA-corrected data were then submitted to multi-

variate classification analysis, with the test probabilities calculated for a shorter epoch encompassing the preparation and produc-

tion phases only (�2 to 4.5 s after the ‘Go’ cue). The EMG data were downsampled, epoched, and filtered in the same way as the

MEGdata. No trials were removed from the dataset, so that the EMGdata from the same trials as in theMEGdataset was submitted

to multivariate classification analysis.

Pattern classifier analysis
First we trained a standard LDA classifier to distinguish the MEG activity at the onset of each of the five button presses in a sequence.

Followingpreprocessing,mean signal amplitude oneach sensor during the 10msperiod immediately before the onset of each response

button press in the sequence was determined for all correct trials (mean proportion of correct trials across participants: 97.3% (SD:

3.1%); range: 87.2%–99.7%;). These mean signal amplitude values were used as a training dataset for all correct trials of each of the

four sequences, respectively. The mean sensor pattern for each button press, and the common sensor-by-sensor co-variance matrix

was determined from the training dataset. A Gaussian-linear multi-class classifier (cf. SupplementaryMaterial) was then used to calcu-

late the posterior probability of an activity pattern belonging to each of the five presses in the sequence across non-overlapping 10ms

time windows in each trial of a) the same sequence (‘within’), b) a sequence with the same target timing, but a different finger order

(‘temporal’), c) a sequencewith the samefingerorder, but adifferent target timing (‘spatial’) andd) a sequencewithbothadifferent finger

order and timing than the training sequence (‘positional’). The same procedure was used for the analysis of EMG patterns.

For statistical analysis of CQ during sequence preparation, an average probability for each of the five press patterns was deter-

mined for per trial in a 1 s time window immediately before the ‘Go’ cue. We then quantified the CQ strength in each trial by taking

the median difference in posterior probabilities for each pair of consecutive finger presses in each trial (i.e., from 1st to 2nd, 2nd to 3rd,

3rd to 4th and 4th to 5th), and then the mean distance across trials. Since the 1st press had a special status with the finger identity and

target onset timing remaining the same across sequences for each participant, we also calculate this distance measure without the

1st press probability (median difference from 2nd to 3rd, 3rd to 4th and 4th to 5th). To display pattern probability dynamics, probabilities
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for each finger press pattern were averaged across trials for each 10ms time window (cf. Figure S1 for 5ms, 20ms and 50mswindows

analyses), and then averaged across sequences. For display purposes only, the data were smoothed using a sliding average boxcar

of 100 ms (i.e., ten 10 ms time bins) using the MATLAB fastsmooth function (https://uk.mathworks.com/matlabcentral/fileexchange/

19998-fast-smoothing-function).

The ‘within’ sequenceanalysis trainedand tested the classifier on timewindows (training onproduction, testing onpreparation data)

from the same set of trials. Accordingly, the classification of production-related time-windows – i.e., 10ms before the 1st-5th press,

respectively –wasperformedon the trainingdata, running the risk of over-fitting (although it is important to note that the specific timing

of finger presses, and therefore the specific time bin from each trial used to train the classifier, varied from trial to trial). Nonetheless, to

support the validity of press probability dynamics during the production period, we performed a 10-fold cross-validation ‘within’

sequence analysis, inwhich the classifierwas successively trained on 90%of trials and then tested on the remaining 10%until all trials

had formed part of the test dataset, with press probability dynamics averaged over all ten folds. Importantly, these press probability

curves showed qualitatively the same phasic increases and decreases as in the original ‘within’ sequence analysis (Figure S3).

Source reconstruction
The linearly constrained minimum variance (LCMV) beamformer spatial filter algorithm from the Dynamic Analysis in Source Space

(DAiSS) toolbox for SPM12 was used to estimate cortical activity on a 10mm grid for whole brain analyses based on preprocessed

MEGdata. Co-registration toMNI coordinates was based on nasion, left and right pre-auricular fiducial points, and the forwardmodel

was derived from a single shell fit to the inner skull surface of a canonical T1 image. There data were then submitted to searchlight

analysis.

Searchlight analysis
To identify the neural origin of the CQ signal during sequence preparation at the sensor and the source levels we used a searchlight

approach in combination with LDA. The searchlight size corresponded to�1% of the data, i.e., three sensors at the sensor level and

20 voxels at the source level. For the focal LDA analysis at the sensor level, we first determined the two nearest neighbors of each

sensor based on theMEGsensor layout. As in the case of thewhole-head analysis, the LDA classifier was then trained onmean signal

amplitude from those three sensors during the 10ms period immediately before the onset of each physical button in correct trials.

Next, we tested the classifier on mean signal amplitude from the same three sensors in a single 10ms time window 500ms before

the ‘Go’ cue and quantified the probability of each finger press being decoded in each trial. Finally, as in the previous CQ distance

analysis, we computed the median distance between the probability of the 1st to 5th (‘within’) finger presses, respectively, averaged

across trials for each sequence and then across sequences for each participant. We then z-transformed the median distance values

across sensors for each participant and computed a one-sample t-statistic on z-score values at each sensor across participants.

There data were then plotted as t-statistic at the scalp level and significant sensors at p < 0.01 marked with a point and a label.

The same analysis was applied to mean signal amplitude in source space using searchlights of 20 voxels as features in the LDA.

Whole brain results were subjected to a random effects analysis with an uncorrected threshold of t(15) > 3.73, p < 0.00. Peak voxels

and t-values of significant clusters were then reported, and the data plotted as t-statistics with a threshold of t(15) > 5.24, p < 0.05

(FWE corrected at the voxel level) centered on the peak voxel (Worsley et al., 1996). Peak voxels and t-values of significant clusters

were then reported in the results and the data plotted as a t-statistic at the scalp level at a threshold of t(15) > 5.24, p < 0.05 (FWE

corrected at the voxel level) centered at the peak voxel (MNI coordinates: 30, �30, �24). The data thresholded at t(15) > 3.73,

p < 0.001 (uncorrected) can be found in Figure S7A.

Finally, to identify regions that were driving the differences between finger presses during the sequence production period, we em-

ployed a searchlight approach in combination with LDA using data from the production period only. As in the analysis described above,

the searchlight size corresponded to�1%of the data – three sensors at the sensor level and 20 voxels at the source level. Here the LDA

classifier was trained to distinguish between the activity patterns of sensors or voxels during the 10ms period immediately before the

onset of each physical button in correct trials. We used a five-fold cross-validation procedure (iteratively training on 80% of trials and

testing on the remaining 20%) and quantified the probability of each finger press being correctly identified within trials for each finger

presssequence. Thedatawere thanaveragedacross sequencesandz-scoredacross sensorsor voxelswithin eachparticipant. Sensor

accuracy resultswere thenplottedas t-statisticat thescalp level andsignificant sensorsatp<0.01markedwithapoint anda label.At the

source level, whole brain resultswere corrected using a randomeffects analysiswith an uncorrected threshold of t(15) > 3.73, p < 0.001.

Peak voxels and t-values of significant clusters were then reported in the results and the data plotted as t-statistics at the scalp level

with a threshold of t(15) > 5.93, p < 0.05 (FWE corrected at the voxel level) centered on the peak voxel (MNI coordinates: �22, �38,

52) (Worsley et al., 1996). The data thresholded at t(15) > 3.73, p < 0.001 (uncorrected) can be found in Figure S7B.

DATA AND SOFTWARE AVAILABILITY

Upon publication MATLAB scripts for reproducing the multivariate classification analyses alongside one behavioral, MEG and EMG

dataset of a representative participant, will be made available on Mendeley data (https://doi.org/10.17632/fxbmm66cr6.1). Upon

publication group t-stat images of the source reconstruction will be made available on Mendeley data (https://doi.org/10.17632/

fxbmm66cr6.1).
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Figure S1. MEG pattern classification employing time windows of different 
width, Related to Fig. 5a, Fig. 6c and STAR Methods: The pattern probability 
curves show ordered competitive queuing during preparation and consistent 
associations with behavioural performance across classification analyses employing 
window width of 5, 10, 20 and 50 ms ('within' sequence classification). 
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Figure S2. Probability values based on training the classifier on finger identity, 
interval identity and position across all sequences, Related to Fig. 5a: The 
classifier was trained on MEG data prior to presses with specific finger identities 
(collapsed across ordinal positions and different temporal intervals preceding the 
press), temporal intervals (collapsed across different ordinal positions and effected 
using different fingers), or ordinal positions (collapsed across different fingers and 
different temporal intervals preceding the press) across all sequences. The results 
are displayed according to the position of the finger press or preceding temporal 
interval in that sequence. Competitive queuing was most pronounced when training 
on specific ordinal positions (position versus finger 2nd-5th: t(15) = 3.1458, p = .013; 
positional versus interval 2nd-5th: t(15) = 4.1165, p = 0.002, two-sample t-test, 
Bonferroni-corrected for two comparisons). 
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Figure S3. Cross-validated ‘within’ sequence analysis, Related to Fig. 5a: Press 
pattern probability dynamics for ‘within’ sequence analysis when testing across time-
windows in the same and across different trials (10-fold cross-validation). 
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Figure S4. Control analyses to test the alternative hypothesis that pattern 
probability during preparation reflects neural pattern proximity between 
training and testing time windows in the context of a slow-changing brain 
state, rather than the ordered queuing of sequential press patterns, Related to 
Fig. 5: a. Pattern probabilities before and after the Sequence cue reveal a step 
change in the distance when analyzing all and b. only switch trials (preceding 
sequence different from current) c.  No positive slope could be found for any of the 
press probabilities during the final 1 sec before the ‘Go’ cue. 
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Figure S5. Pattern similarity across time windows, Related to Fig. 5a and c:  
a. Dynamic correlation coefficients (rho) between MEG patterns for the 1st – 5th press 
(training patterns in the classification analyses) and time windows throughout the 
preparation and production periods. Pattern correlations peak during production 
time, similarly to pattern probabilities in Fig. 5, suggesting that our classification 
reflected increased pattern similarities. Note the presence of graded negative 
correlations during preparation for 2nd-5th press probabilities and the abrupt switch to 
positive correlations after the ‘Go’ cue, indicating abrupt rather than gradual pattern 
dynamics. b. Same analyses for EMG patterns, respectively. c. Pattern correlation 
between press patterns during production revealed a graded positive correlation for 
EMG, but not for EMG data.   
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Figure S6. Median split by finger order accuracy, Related to Fig. 6a: Median 
split of press probability curves by percentage of trials with incorrect finger presses. 
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Figure S7. Source reconstruction, Related to Fig. 7c and d: The source 
reconstruction data as in Figure 7c-d plotted at a lower threshold of t(15) > 3.73, p < 
.001 (uncorrected) and centered at the respective peak voxel (MNI coordinates: 30, -
30, -24 in panel a; -22, -36, 52 in panel b). 
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